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Abstract. Mathematical modelling of fast (microsecond) and superfast (nanosecond) regimes
of electrical explosion of copper wires was carried out. The mechanism of electrical explosion
was described as a process of propagation of the phase transition waves from outer boundary to
the centre of the wire. The expressions for estimation of velocity of phase transition waves were
obtained. Typical phase tracks were obtained for micro- and nanosecond electrical explosion of
copper wires.

Metal–dielectric phase transition takes place without phase transition to a two-phase state in
the skin in a nanosecond explosion. The process of propagation of the evaporation waves is the
mechanism of wire electric explosion in the microsecond regime.

1. Introduction

There exists a number of technical and scientific aspects of application for electrical wire
explosion. The great interest in the phenomenon is caused by the wide range of changeable
parameters (temperature, density, pressure) and velocities of the processes.

Wire explosions are conditionally divided into fast and superfast; this is reasonable because
of different mechanisms of wire destruction accompanying these explosions.

According to Bennett [1] the mechanism of electrical explosion development can be
described as transformation of a liquid phase into a gaseous one, a so-called evaporation
wave moving radially from the outer boundary to the centre of a wire. The method was further
developed and used for the model of interaction of powerful laser radiation and condensed
matter [2, 3]. In this model the size of the evaporation wave front is neglected, for the
matter can be in two states: (1) conducting metal, not yet influenced by the evaporation wave;
and (2) expanding nonconducting saturated steam [4]. This allows us to obtain approximate
solutions for parameters of evaporated matter.

There exists also a kind of explosion characterized by low velocity of the fluid–gas phase
boundary propagation and by a large size of the two-phase transitional layer [5]. In such case it
is necessary to apply another model that takes into account processes in the transitional layer.

Evaporation is not a single phase transition that can take place at an electrical explosion.
The influence of strong electric and magnetic fields on the conducting condensed matter during
melting, evaporation etc can result in the following phase transitions: metal–semiconductor
–dielectric. These phase transitions propagate like a wave [1, 5–7] under certain conditions.

In this work both fast and superfast explosions will be modelled; a model summarizing
methods of describing these explosions is proposed. This model presents explosions as
processes of generation and propagation of the above phase transition waves across the wire.
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2. Theoretical model

Let us consider phase transition waves presenting a propagation process of strong local
nonuniformity of electric and magnetic field if in this local region the mentioned phase
transitions take place.

Change of any characteristic of matterf (specific internal energyε, electrical conductivity
σ and densityρ) is described by a continuity equation. At phase transition caused by current
pulse Joule heating this equation can be written

∂f

∂t
+ v

∂f

∂r
= w (1)

wherev is the velocity of movement of matter,w = w(j) is the rate of change of parameter
f . Having designated the typical size of field nonuniformity byδ (in this regionf changes
abruptly from initial valuef0 to f ∗) and coming to the coordinate system that moves with a
velocity equal to the velocity of phase transition waveu and substitutingz = r +ut we obtain

(u + v)
df

dz
= w. (2)

Since|df/dz| ≈ |1f/1z| = |f0 − f ∗|/δ, we can obtain an expression for an estimation of
value of the propagation velocity of a phase transition

u ∼= wδ

1f
− v. (3)

One or several characteristics of matter can change in the front of a single wave of phase
transition.

One can see that there exists a threshold value of current densityj ∗ at which a
phase transition wave begins its propagation;j ∗ is defined from conditionu > 0 i.e.
w(j ∗)δ/1f −v > 0. In case of nonexpanding wire(v ≡ 0) the right-hand side in equation (3)
is always greater than zero, and therefore a phase transition wave begins its propagation from
the outer boundary to the wire centre just when the temperature is equal to the temperature of
phase transition.

A strong nonuniformity of current distribution takes place at superfast regimes of wire
self-heating. The cause of this is generation and explosion of a skin. The wave movement
is caused by displacement of current from the skin. This displacement takes place due to an
abrupt decrease of electrical conductivity under heating of the metal wire by the high density
current.

If the parameterf in equation (1) is the specific internal energy, thenw(j) = j2/(σρ) is
the rate of energy release determined by Joule heating. So expression (3) can be rewritten for
estimation of the velocity of the so-called ’current wave’

u ∼= j2δj

σρ1ε
(4)

wherej = I/S is the current density;I is the heating current;S = π(2aδj − δ2
j ) is the cross-

sectional area of the skin for cylindrical wire;a is the wire radius;δj is the typical thickness
of the skin;1ε is the change of specific internal energy of matter across the skin. The wave is
displaced into a region of cool immovable metal, thereforev = 0.

At fast expansion of the wire melt layers a nonuniformity of magnetic field and current
density can also arise. The diffusion equation for the magnetic inductionBϕ can be written

∂Bϕ

∂t
+
∂(vBϕ)

∂r
= 1

µσ

∂

∂r

(
1

r

∂(rBϕ)

∂r

)
. (5)
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As one can see, an approximate solution of this equation for a magnetic field (taking into
consideration the wire expansion and assuming that the wire is heated by the current pulse
I = I 0 eωt , whereI 0 is the value of current in the melting moment) can be written as a power
series expansion

Bϕ = µI

2πa2

∞∑
n=0

b2n+1r
2n+1 (6)

whereb2n = 0, b1 = 1, b2n+1 = [(µσ)n/(22n(n + 1)!n!)]
∏n
k=1[2(k − 1)η + ω], n > 1;

η = v−1 dv/dt ; µ is the absolute magnetic permittivity.
Thus we can write

j = I

πa2

{
1 +

∞∑
n=1

[
1

(n!)2

(√
µσωr

2

)2n n∏
k=1

(
1 +

2(k − 1)η

ω

)]}
. (7)

It follows from expression (7) that in slowly expanding wire(η � ω) a skin is set up; its
typical size can be estimated from the formula

δj = 0.5(µσω)−1/2 (8)

under the condition

0.25µσωa2� 1. (9)

In the case of fast expanding wire another type of radial nonuniformity of current density can
be set up. It is caused both by changing of the heating current and by changing of the wire
radius. It is set up under the conditions

η > ω � (0.25µσa2)−1. (10)

Its typical sizeδj is also determined by formula (8).
It follows from expression (9) that nonuniformity of current density is set up for

a = 10−4 m andσ = 3 × 106 S m−1 (these values correspond to a liquid copper wire)
atω > 107 s−1; its appearance is caused by fast changing of the heating current. In the fast
expanding liquid copper wire(η ∼ ω > 107 s−1) another type of nonunifomity of current
density also arises.

Numerical experiments allow us to simulate regimes with both types of phase transition.

3. Numerical results for superfast regimes

Mathematical modelling of superfast regimes of a self-heating copper wire (l = 15 mm,
a = 0.1 mm, wherel is the wire length) with a current pulse was carried out. Diffusion and
displacement of magnetic field was taken into account; it was assumed that the medium is
weakly compressible because considerable development of hydrodynamic processes during
t ∼ 10−8 s should not be expected; electrical conductivity was simulated by semiempirical
expressions for solid and liquid copper [8], and by the model for the dense plasma state proposed
in [9]; this model is based on interpolation formulas; the structure factor takes into account the
change of particle interaction according to the density change with increasing of temperature;
the effective approximation allows us to calculate an electron scattering on electrons, ions
and neutrals; the method of calculation of a mean ion charge takes into account both thermal
ionization and ‘crushing’ of an electron shell with pressure increase. It was assumed that
conductivity vanishes atρ/ρ0

∼= 0.15.
Two different regimes of wire self-heating were investigated with the following circuit

parameters:C1 = 20 nF,U0 = 40 kV, L = 5 nH (regime 2 differs from regime 1 by
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(a) (b)

Figure 1. The time-dependent heating current (a) and wire resistance (b): broken curve (– – –),
regime 2; solid curve (——), regime 1.

C2 = 25 nF, whereC is the capacity;U0 is the initial voltage andL is the inductance). It was
assumed that a copper wire was exposed to the open air. Figures 1–6 show the results obtained
in these simulations.

Figure 1 shows the difference between regime 1 and regime 2 behaviour and illustrates in a
general way the explosive phenomenon in terms of heating current (a) and wire resistance (b).
One can see that abrupt decrease of heating current is set up simultaneously with abrupt
increase of wire resistance and energy is released faster in regime 2 (the regime with greater
stored energy).

Regime 1 has low energy because the stored energy(0.5CU2
0 ) is less than is necessary for

wire heating to temperatures up to the critical one and higher; at these temperatures a strong
decrease of density takes place and metal–insulator phase transition is possible. Therefore
such self-heating of wire proceeds like a melting phase transition wave. In this case the
change of the internal energy of matter in the skin is equal to1ε = c1T + λ (wherec is the
specific heat of solid metal;1T = Tm(P )− T0 is the temperature change at the melting wave
front from the initial temperature to melting temperatureTm(P ), λ is the heat of melting).
The electrical frequency for the regimes isω = (LC)−0.5 ∼= 108 s−1, therefore the skin size
is δj

∼= 1.5 × 10−5 m. A strong nonuniformity of current distribution causes Joule heat
release and matter melting in skin; this leads to an abrupt decrease of conductivity and to the
current redistribution described by a diffusion equation. The typical time of current diffusion
is τj = (δj )2/D (whereD = (µσ)−1 is the diffusion coefficient for the melt); in this case it
is τj
∼= 0.5 ns.
Figure 2 shows the time dependent process of conductivity change against the radial

distance at a series of times from the commencement of the simulation of regime 1. The
maximum of conductivity corresponds to solid copper, and the minimum corresponds to liquid
copper. The velocity of the melting wave obtained from the results shown in the figure is
u ∼= 6× 103 m s−1. The same value can be obtained from equation (4) withj equal to the
maximum value of current density.

Figure 3 shows the process of propagation of the current wave. The maximum of current
density has a small increase as the conductivity of solid and liquid copper changes only by an
order of magnitude. The peak value of current density is equal toj ∼= 1.3× 1013 A m−2 on
reaching the symmetry axis.
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Figure 2. The change of conductivity against the radial distance for regime 1. Figures on the
curves show the time in nanoseconds.

Figure 3. The change of current density against the radial distance. These curves illustrate the
propagation of the melting wave across the wire section (regime 1). Figures on the curves show
the time in nanoseconds.

Figures 4–6 show the change of conductivity and current density against the radial distance
at a series of times from the commencement of the simulation of regime 2. The initial stage
is the same as for regime 1: a melting wave is formed in the wire; the velocity of this wave
is u ∼= 5 × 104 m s−1. Subsequent self-heating of melting part of the wire leads to fast
expansion of the liquid metal(η ∼= 3× 108 s−1 becomes comparable toω). Therefore the
second region of local nonuniformity of current density arises. Thus an abrupt decrease of
density and conductivity in the new region of current nonuniformity causes formation of the
second current wave by the timet ∼= 17 ns. In the wire front a liquid metal–dielectric phase
transition occurs when density decreases toρ = 1.5× 103 kg m−3. The second current wave
has velocityu ∼= 105 m s−1; it overtakes the first wave; after that they move together. The peak
value of the second current wave becomes greater by an order of magnitude. Subsequently
melting, transitions to plasma and to dielectric occur in the front of a single wave moving with
velocityu ∼= 2× 104 m s−1.

According to figure 1 an abrupt increase of wire resistance starts by the timet ∼= 17 ns; this
corresponds to the time of the second current wave formation caused by the metal–dielectric
transition.
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Figure 4. The change of conductivity against the radial distance for regime 2. Figures on the
curves show the time in nanoseconds.

Figure 5. The change of current density against the radial distance. These curves demonstrate
propagation of melting wave in a cross section and the rise of the second current wave (17 ns curve)
in regime 2. Figures on the curves show the time in nanoseconds.

4. Mathematical modelling of microsecond regime

It is known that the initial stage of the fast regimes of wire self-heating are weakly nonuniform
[5]; all parameters for a cylindrical wire are uniform along radial distance for solid and for
liquid states except for magnetic pressure. Let us consider the development of boiling and
evaporation processes in the wire uniformly heated with a current pulse; and let us find the
typical size of the two-phase transitional layer.

It is known that temperature of boiling has a strong dependence on pressure, therefore a
volumetric boiling is not possible even in case of quasi-uniform regimes of heating. Thus the
propagation of a phase transition like a wave from the outside boundary to the centre of a wire
is caused by pressure nonuniformity.

The boiling temperatures of the neighbouring layers of the wire differ from each other
by the value1Tb ≈ (dTb/dP)1P ≈ |dTb/dP ||dP/dr|δp (where dP/dTb is the pressure
change against the boiling temperature along the curve of liquid–gas phase balance,r is the
current coordinate of the wave front,δp is the size of the transition layer of the evaporation
wave front). Magnetic pressure can be written asP(r) = P(0)(1− r2/a2) (whereP(0) is
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Figure 6. The change of current density against the radial distance. These curves demonstrate
propagation of the first and second current waves in a cross section of wire (regime 2). Figures on
the curves show the time in nanoseconds.

the pressure on the wire axis), then|dP/dr| = P(0)(2r/a2). Specific evaporation heats differ
very little for neighbouring layers therefore continuous propagation of the evaporation wave
is possible just at rising of the temperature of the next layer by1Tb during the evaporation
time for the given layer. An equalitycf 1Tb = λb is correct (wherecf is the specific heat of
liquid metal;λb is the evaporation heat).

Thus the size of evaporation wave front for the considered case is determined by

δp
∼= λb

cf P (0)

∣∣∣∣ dP

dTb

∣∣∣∣a2

2r
. (11)

As the wire temperature is uniform up to the start point of boiling, the change of specific
internal energy of the evaporation wave front is1ε = λb, and the velocity of wave is determined
by

u ∼= j2δp

σρλb
− v (12)

wherev is the velocity of heat expansion of liquid metal. In the case of the weakly nonuniform
regime of wire self-heating expression (12) can be rewritten

u ∼= I 2Rδp

mλb
− v (13)

wherem is the mass of the wire;v ∼= 0.5αrI 2R/(mcf ) is determined as in [10],α is the
expansion coefficient. The evaporation wave can move atu > 0; this is possible while the
following inequality is realized:

a2

P(0)αr2
<

dTb
dP

. (14)

A mathematical simulation of a weakly nonuniform regime (regime 3) of self-heating of a
copper wire(l = 88 mm, a = 0.15 mm)was carried out with the following circuit parameters:
C = 6µF,U0 = 20 kV,L = 5.4µH. It is assumed that the wire was submerged in water. A
mathematical model and its finite-difference approximation had been described in [5, 11].

Figure 7 shows the time-dependent heating current (a) and wire resistance (b) for
numerical and experimental data [12]. Figure 8 shows the radial distribution of conductivity
at different moments of time. It demonstrates propagation of the evaporation wave front
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(a) (b)

Figure 7. The time-dependent heating current (a) and wire resistance (b) for regime 3: ——,
numerical data; *,◦, experimental data given in [12].

Figure 8. The change of conductivity against the radial distance for regime 3. Figures on the
curves show the time in microseconds.

across the wire section. Obtained data allow us to estimate the velocity of the evaporation
wave (its valueu ∼= 70 m s−1) and the size of its front(δp

∼= 2.5 × 10−5 m thus
one can see that the size of the two-phase transitional layer is great and can be up to
0.25a). These values are in good agreement with values obtained from expressions (11)
and (13).

It follows from experimental data [12] that an intensive evaporation of the wire layers
begins atts ≈ 6.4 µs and the wire resistance rises up totf ≈ 8.4 µs. These data
allow us to estimate roughly the velocity of the evaporation wave according to expression
ue ≈ a/(tf − ts) ≈ 75 m s−1; this value is in accordance with those obtained from numerical
data and from formulas (11) and (13).

It follows from the numerical results that the formation of the evaporation wave is
considerably delayed as compared to the start of evaporation of the surface layer. This delay
is caused by the fact that all parameters have the values when inequality (14) is not true up to
the momentt ∼= 7µs.
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Figure 9 shows a phase diagram of liquid copper for the second and third regimes. One
can see that in the central layer magnetic pressure considerably exceeds critical pressure for
both regimes; the same is true for the outer layer in regime 2; and the outer layer in regime 3
transits to the two-phase state early (before loss of layer conductivity).

Figure 9. The phase diagram of liquid copper in theP–V plane. The solid curve bounds the
liquid–vapour two-phase region. The broken lines (– – –) are the numerical tracks for regimes 2
and 3. The data points (◦,♦) are those of regime 3 and (4,×) are those of regime 2 obtained for
central and outer layers, respectively.

In the nanosecond regime (regime 2) a liquid metal–dielectric phase transition occurs in
the front of a single wave. Its propagation is caused by displacement of current from the layer in
which the above phase transition takes place; thus up to loss of conductivity a phase transition
to a two-phase state does not happen; therefore the velocity of this phase transition wave can
exceed the sound velocity. It results from numerical modelling that the phase transition to a
two-phase state of any layer takes place just after the loss of layer conductivity in nanosecond
regimes.

In the microsecond regime (regime 3) magnetic pressure in the central layer exceeds the
copper critical pressure, therefore it does not vaporize up to 7.4 µs. A large part of the wire
loses its conductivity due to propagation of the boiling wave but the central part loses its
conductivity due to propagation of the metal–dielectric phase transition wave. The presence
of two powder fractions (these fractions considerably differ from each other) in the products of
conductor dispersion proves this. In [13] was reported that although the main part of particles
have typical size∼ 20 nm, during explosion another type of particle was registered according
to light scattering at the stage of abrupt rise of wire resistance; their size was reported to be
about 100 nm.
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5. Conclusions

The theoretical and numerical modelling of micro- and nanosecond explosions of wire were
carried out; this allows us to show the dynamics of different phase transitions. The conditions
needed for formation and propagation of phase transition waves were investigated. Theoretical
and numerical data are in accordance with experimental data.

The process of propagation of the phase transition waves is the mechanism of wire electric
explosion. This leads to a change of phase state of matter, its electrical and thermodynamical
properties and first of all to an abrupt decrease of density and conductivity, and at a certain
regime conductivity entirely vanishes.

The formation of phase transition waves takes place due to nonuniformity of any parameter
of the wire matter caused by the influence of strong pulsed current. The velocities of phase
transition waves can differ from each other by several orders of magnitude. The start of
propagation of a wave is characterized by an abrupt increase of wire resistance due to the
metal–dielectric transition in its front.
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